Geodesics in hyperbolic $3$-folds.
نویسندگان
چکیده
منابع مشابه
Drilling long geodesics in hyperbolic 3-manifolds
Given a complete hyperbolic 3-manifold one often wants to compare the original metric to a complete hyperbolic metric on the complement of some simple closed geodesic in the manifold. In some cases this can be done by interpolating between the two metrics using hyperbolic cone-manifolds. We refer to such a deformation as drilling and results which compare the geometry of the original manifold t...
متن کاملSimple Closed Geodesics in Hyperbolic 3-Manifolds
This paper determines which orientable hyperbolic 3-manifolds contain simple closed geodesics. The Fuchsian group corresponding to the thrice-punctured sphere generates the only example of a complete nonelementary orientable hyperbolic 3-manifold that does not contain a simple closed geodesic. We do not assume that the manifold is geometrically finite or that it has finitely generated fundament...
متن کاملNon-simple Geodesics in Hyperbolic 3-manifolds
Chinburg and Reid have recently constructed examples of hyperbolic 3manifolds in which every closed geodesic is simple. These examples are constructed in a highly non-generic way and it is of interest to understand in the general case the geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For hyperbolic 3-manifolds which contain an immersed totally geodesic surf...
متن کاملGeodesics and commensurability classes of arithmetic hyperbolic 3-manifolds
This sharpens [10], where it was shown that the complex length spectrum of M determines its commensurability class. Suppose M ′ is an arithmetic hyperbolic 3-manifold which is not commensurable to M . Theorem 1.1 implies QL(M) 6= QL(M ′), though by Example 2.1 below it is possible that one of QL(M ′) or QL(M) contains the other. By the length formulas recalled in §2.1 and §2.2, each element of ...
متن کاملOn the Space of Oriented Geodesics of Hyperbolic 3-space
We construct a Kähler structure (J,Ω, G) on the space L(H) of oriented geodesics of hyperbolic 3-space H and investigate its properties. We prove that (L(H), J) is biholomorphic to P×P−∆, where ∆ is the reflected diagonal, and that the Kähler metric G is of neutral signature, conformally flat and scalar flat. We establish that the identity component of the isometry group of the metric G on L(H)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 1997
ISSN: 0026-2285
DOI: 10.1307/mmj/1029005708